고 무선 스펙트로 VIS plus

Order Code GDX-SVISPL

고 무선 스펙트로 VIS plus는 휴대가 가능하며 가시광선에서 근적외선까지의 분광 광도계 및 형광 측정기입니다.이 스펙트로미터는 화학,생물,물리학을

위한 광범위한 분광학 실험에 사용 할 수 있습니다. 이러한 실험에는 Beer의 법칙 연구, 흡광 투과 형광 측정 전체 파장 스펙트럼 수집 반응 속도를 모니터링하는데 사용됩니다.

> 주의 이 제품을 포함한 버니어의 모든 제품은 교육용으로 제작되었습니다. 따라서 산업, 의료 또는 연구용으로 사용하기에는 부적합할 수 있습니다.

★ 구성

- ·고 무선 스펙트로 VIS plus 본체
- ·15개의 polystyrene 큐벳과 뚜껑
- ·미니 USB 케이블
- 전원 어답터 (배터리 충전용, USB를 통한 데이터 수집 중에 연결하지 마십시오.)

★ 호환 소프트웨어

http://www.vernier.com/manuals/gdx-svispl 에서 호환되는 소프트웨어 리스트 확인 가능

★ 시작하기

· 블루투스 연결시

- 1. Graphical Analysis 4를 컴퓨터, 크롬북, 모바일 장치에 설치합니다.
- 2. 사용 전 최소 2시간 정도 충전하도록 합니다.
- 3. 센서의 전원버튼을 눌러 전원을 켭니다. 블루투스 LED가 빨간색으로 반짝이게 됩니다.
- 4. Graphical Analysis 4를 실행합니다.
- 5. Sensor Data Collection(센서 데이터 수집)을 클릭합니다.
- 6. Discovered Wireless Devices(발견된 무선 장치) 목록에서 고 무선 센서를 클릭합니다. 센서에 표기된 바코드를 통해 근접한 센서 식별이 가능합니다. 연결 성공 후 블루투스 LED는 녹색으로 바뀌게 됩니다.
- 7. 이 제품은 다중 채널 센서입니다. 활성화 채널은 연결된 장치 센서 채널 리스트에 있습니다. 채널을 변경하려면 센서 채널 다음에 있는 체크 박스를 선택합니다.
- 8. 데이터 수집 모드로 들어가기 위해 클릭합니다.

· USB케이블 연결시

- 1. 컴퓨터 혹은 크롬북에서 사용 하려면 Graphical Analysis를 설치합니다. 만약 랩퀘스트2 인터페이스를 사용하려면 최신버전인지 확인하도록 합니다.
- 2. USB포트에 센서를 연결합니다.
- 3. Graphical Analysis 4 를 실행하고 랩퀘스트2의 전원을 켭니다.
- 4. 이 제품은 다중 채널 센서입니다.

★ 센서 충전하기

센서를 USB 충전 케이블에 연결하고 USB포트를 통해 2시간 동안 충전 합니다.

추가 악세서리 고 무선 충전 스테이션(GDX-CRG)을 통해 여러 개의 센서를 동시에 충전 할 수 있습니다. 각 센서의 LED를 통해 충전 상태를 확인할 수 있습니다.

충전 중	주황색 LED
완전 충전 됨	녹색 LED
센서 전원 켜기	전원 버튼을 누릅니다. 빨간색 LED가 깜박입니다.
센서 잠자기 모드	전원 버튼을 3초 이상 누르고 있으면, 잠자기 모드로 진입합니다. 깜박이던 빨간색 LED가 멈추게 됩니다.

★ 센서 연결

다음 링크를 통해 연결과 관련된 최신 정보를 확인하실 수 있습니다. www.vernier.com/start/gdx-svispl

★ 블루투스를 통한 연결

연결 준비	빨간색 LED가 깜빡입니다.
연결 완료	블루투스를 통한 연결이 완료되면 녹색 LED가 깜빡입니다.

★ USB를 통한 연결

연결완료와 충전	USB를 통해 Graphical Analysis에 센서가 연결되고 충전이 될 때 주황색 LED가 켜집니다. 블루투스 LED는 꺼집니다.
연결완료, 완전충전	완전 충전이 되면 배터리 아이콘이 녹색 LED로 바뀝니다. 블루투스 아이콘은 꺼집니다.
USB통한 연결, 블루투스 연결완료	센서가 충전 중에는 주황색으로 바뀝니다. 블루투스 녹색 LED는 깜박입니다.

★ Spectral Analysis4를 통한 센서 사용

다음 단계를 따라 센서를 연결하십시오.

Spectral Analysis4를 통한 데이터 수집에는 다음 3가지 옵션이 있습니다.

1. 측정 대 파장 - 전체 스펙트럼 수집

2. 측정 대 농도 - 비어의 법칙

3. 측정 대 시간 - 시간 기반 데이터 수집

기본적으로 흡광도가 선택되어있습니다. %투과 측정을 원한다면 스위치를 토글 합니다.

* 주의: Spectral Analysis는 아직 세기와 형광 데이터 수집은 지원하지 않습니다.

★ 측정 대 파장 (전체 스펙트럼)

- 1. 측정 대 파장(Measurement vs Wavelength)를 선택합니다.
- 2. 보정 대화 상자가 나타나면 예열 타이머가 스펙트로미터 연결 시 카운팅을 시작합니다. 카운팅 시간은 다를 수 있으며 예열시간은 최소 90초 지만 최상의 결과를 위해 몇 분정도 예열하는 것이 좋습니다.
- 큐벳의 3/4을 증류수로 채웁니다. 스펙트로미터가 예열이 된 후 큐벳을 투명한 면이 광원을 향하도록
 넣고 교정 완료를 누릅니다.
- 4. 이제 데이터 수집 준비가 완료되었습니다. 샘플을 큐벳에 3/4 가량 채웁니다. 스펙트로미터에 넣고 수집을 클릭하십시오. 중지를 눌러 데이터 수집을 종료하십시오. 스펙트럼은 자동으로 저장됩니다.

★ 측정 대 농도 (비어의 법칙)

- 1. 측정 대 농도(Measurement vs Concentration)를 선택합니다.
- 2. 보정 대화 상자가 나타납니다. 워밍업 타이머는 스펙트로미터가 연결될 때 카운팅을 시작합니다. 최소 90초간 예열을 해야하며 몇 분의 예열을 추천합니다.
- 3. 빈 큐벳에 3/4정도의 증류수를 채워 투명한 면이 광원을 향하게 넣습니다. 보정 완료를 누릅니다.
- 4. 파장 선택 다이얼박스를 고르거나 측정하고자 하는 파장을 입력하십시오. 완료를 누릅니다.
- 5. 수집을 클릭합니다. 이 때 첫 번째 시료가 들어 있는 큐벳은 스펙트로미터에 있어야합니다. 값이 안정화 되면 보관을 누른 후 샘플의 농도를 입력합니다.
- 6. 두 번째 시료를 스펙트로미터에 넣고 값이 안정화 되면 보관을 누릅니다. 샘플의 농도를 입력합니다.
- 7. 남아있는 샘플들도 이와 같이 수행합니다. 수집이 완료되면 중지 버튼을 눌러 종료합니다.
- 8. 표준용액을 위한 가장 알맞은 선 방정식을 위해서는 그래프 메뉴에서 곡선 추세선을 선택 후 선형(Linear)를 선택합니다. 적용과 완료를 누릅니다.
- 9. 만약 미지의 농도를 알기 위해서는 시료를 큐벳에 넣고 Graph Tool(그래프 도구)를 클릭하거나 보간(Interpolate)을 활성화 합니다. 미지의 농도와 일치하는 값을 찾을 때까지 선을 클릭합니다.

★ 측정 대 농도 (동역학)

- 1. 측정 대 시간(Measurement Vs Time)을 선택합니다.
- 보정 대화 상자가 나타납니다. 워밍업 타이머는 스펙트로미터가 연결될 때 카운팅을 시작합니다.
 최소 90초간 예열을 해야하며 몇 분의 예열을 추천합니다.
- 큐벳의 3/4을 증류수로 채웁니다. 스펙트로미터가 예열이 된 후 큐벳을 투명한 면이 광원을 향하도록 넣고 교정 완료를 누릅니다.
- 4. 파장 선택 대화 상자의 지침을 따르거나 측정하고자하는 파장을 입력하십시오.
- 5. 기본 데이터 수집 설정은 사용자가 수동으로 데이터 수집을 중지 할 때까지 2초마다 값을 수집 합니다.
- 6. 반응물을 혼합합니다. 2mL 정도를 큐벳에 넣고 스펙트로미터에 넣습니다. 수집을 누릅니다.
- 7. 데이터를 함수에 맞추려면 Graph Tools, 그래프를 눌러 곡선추세선(Curve Fit)을 선택한 후 알맞은 곡선을 선택합니다. 적용을 누릅니다.
- 8. 계산된 열을 데이터세트에 추가하기위해 데이터표에 More Option(옵션)을 누릅니다. 계산된 열을 추가를 선택합니다. 이름, 단위, 표시된 정밀도를 수정합니다. Insert Expression(표현식 삽입)을 선택하고 알맞은 방정식을 고릅니다. 매개 변수와 열 옵션을 변경합니다. 적용을 누릅니다. 계산된 열이 자동으로 그래프에 표시됩니다.

★ Spectral Analysis 설정 변경

- 1. 스펙트로미터 설정 다이얼로그를 연기위해 톱니 모양을 클릭합니다.
- 2. 3가지 매개 변수가 있습니다.
- A. 적분 시간(Integration Time): 이것은 카메라의 셔터 속도와 유사합니다. Spectral Analysis 4는 자동으로 알맞은 샘플 시간을 보정 중에 선택합니다.
- B. 파장 평활(Wavelength Smoothing): 이것은 평균값을 계산하는데 사용되는 주어진 값의 양쪽에 인접한 수입니다.
- C. 시간 평균(Temporal Averaging): 평균 판독 값을 계산하기 위해 주어진 파장에서 측정한 판독 값의 수입니다.
- 3. 스펙트로미터를 재보정하려면 언제든지 보정 버튼을 누릅시오.

*	Y	양
---	---	---

광원	백열 LED
디텍터	리니어 CCD
파장 범위	380-950 nm
파장 인터벌	~1 nm
옵티컬 해상도 (FWHM)	5.0 nm
파장 정확도	±4.0 nm
광도계 정확도	±0.10 A.U.
일반적인 스캔 시간	~2초
작동 온도	15 ~ 35 ℃
배터리	고용량 리튬이온 충전 배터리
무선	블루투스 4.2
형광 지원	405, 500 nm에서 Excitation

TEL. 02-929-1110 FAX. U2-727 OFF info@koreasci.com www.koreasci.com (버니어코리아 공식 카페 : cafe.naver.com/mblclub) 서울시 양천구 국회대로 56(신월동, 테크맨 빌딩 5층)