

Vernier Spectral Analysis

버니어 스펙트럼 분객

사용설명서

SPECTRAL ANALYSIS®	
새로운 실험	저장된 파일 열기
▲	파일 선택
• vs. 파장 (전체 스펙트럼)	VERNIER.COM
• vs. 농도 (Beer's Law)	User Manual
• vs. Time (Kinetics)	^[2] <u>샘플 데이터</u>
 ✓ % 투과율 (+) ✓ Fluorescence (+) 	전 <u>버니어스펙트로미터</u> Vernier
L Emissions (+)	
Advanced Full Spectrum	기준 버전
스팩트로미터가 연결되었습니다. 스팩트로미터를 연결합니다	4.8.1, 2021년

목 차

|. 소프트웨어 다운로드 안내-----3

- 소프트웨어 다운로드 ······3
- Ⅱ. 분광계 연결------ 4

•	지원되는 분광기 ·····4
•	USB를 통한 연결방법 ······4
•	블루투스 무선 연결 방법 ······4

Ⅲ. 새로운 실험 선택 ----- 5

•	흡광 · · · · · · · · · · · · · · · · · · ·
•	%투과율 ·····7
•	형광 · · · · · · 8
•	발광 · · · · · · · · · · · · · · · · · · ·
•	전문가 모드 ·····10
•	각 버니어 스펙트로미터의 지원되는 모드 ··10

Ⅳ. 데이터 수집 방법 ----- 11

•	흡광	모드와	%투과율	모드		• •	• •		• •	•	• •	• •	- '	11	
---	----	-----	------	----	--	-----	-----	--	-----	---	-----	-----	-----	----	--

- 파장별 강도 데이터 수집 모드 ······11
- 특정 파장의 농도별 강도 측정모드 ······13
- 특정 파장의 시간별 강도 측정 모드 · · · · · 14
- 형광 모드 ······15
- · 발광모드 ······15

V. 데이터 분석 16	
• 곡선 맞춤 적용·····16	
• 계산된 열 ······16	
• 수동열 생성 ·····18	

VI. 그래프 분석 도구 ----- 19

•	기울기 도구(Tangent) · · · · · · · · · · · · · · · · · · 19
•	통계 보기 ·····19
•	적분 보기 ·····19
•	사이 값 추정(보간, Interpolation) ·····20
•	그래프 확대 축소, 이동 ·····20

Ⅶ. 그래프 모양 바꾸기 ----- 21

•	그래프 표시 데이터 선택 · · · · · · · · · 2	1
•	그래프 주석 추가·····2	1

· 그래프 제목 추가, 선 모양 변경 ······22

Ⅷ. 파일 관리 ----- 23

• 파일 저장 ······23
• 파일 불러오기 ·····23
• 파일 내보내기 ·····23

• 인쇄하기······23

l . 소프트웨어 다운로드 안내

· 소프트웨어 다운로드

사용하는 장치에 따라 해당 목록에 접속하여 'Spectral Analysis'를 다운로드 합니다.

장치	다운로드
Windows 및 macOS 컴퓨터	Vernier 웹사이트(https://www.vernier.com/product/spectral-analysis/)
Chrome™	Chrome Web Store
iOS(iPad®, iPhone® 및 iPod touch용)	앱 스토어
Android	Google Play store
	·

시스템 요구사항

최신 시스템 요구 사항 확인 - www.vernier.com/spectral-analysis

라이센스 정보:

스펙트럼 분석 소프트웨어는 무료이며 제한 없이 컴퓨터에 설치할 수 있습니다. 크롬, iOS, 안드로이드용 Spectral Analysis 앱은 무료이며 각각의 웹 스토어를 통해 배포됩니다. 따라서 조건과 라이센스는 전적으로 이들 상점에 의해 결정됩니다.

개인 정보 취급 방침:

COPPA, SOPIPA 및 FERPA 규정을 준수합니다. Spectral Analysis는 다음과 같은 방식으로 학생 개인 정보 보호 및 안전과 관련된 연방 규정을 준수합니다. 스펙트럼 분석 소프트웨어는 학생이나 교사로부터 어떠한 개인 정보도 수집, 요청, 공유 또는 저장하지 않습니다. Spectral Analysis는 앱에 광고를 표시하지 않습니다.

Ⅱ. 분광계 연결

• 지원되는 분광기

- 무선 분광계 (Go Direct® SpectroVis® Plus)
- 스펙트로 비즈 (SpectroVis)
- 스펙트로 비즈 플러스(SpectroVis Plus)
- 스펙트로미터 디텍터(Vernier Emissions)
- 형광 UV-VIS 스펙트로미터(Vernier Fluorescence/UV-VIS)
- 버니어 UV-VIS 스펙트로미터(Vernier UV-VIS)

• USB를 통한 연결방법

<mark>⊿</mark> ₀ Ve	ernier Spectral Analysis					×
	Untitled				- \$	
		SPECTRAL ANALYSI	S°	비이터 세트	1	
	1.4	새로운 실험	저장된 파일 열기	n		•••
		(∧ : : : : : : : : : : : : : : : : : : :	파일 선택			
		• vs. 파장 (전체 스펙트럼)	VERNIER.COM			
		• vs. 농도 (Beer's Law)	☑ <u>User Manual</u>			
		vs. Time (Kinetics)	☑ <u>샘플 데이터</u> ☑ 버니어 스펙트로미터			
orbance		✓ % 투과율 ™				
Abs		Fluorescence (+)	Vernier			
	0.4					
	0.2	Advanced Full Spectrum				
	400 450	Vernier Go Direct SpectroVis Plus 연결됨 🛈				
12		Marralananth (ann)				

USB 케이블로 연결하고 스펙트럼 분석 앱을 실행하면 바로 사용할 수 있습니다.

- **፤!** (i) 아이콘을 누르면 연결된 분광기의 정보를 볼 수 있습니다.
- **팁!** USB로 연결하여 분광기를 사용면 데이터 전송이 더 빠릅니다.

• 블루투스 무선 연결 방법

- 1. Spectral Analysis를 실행합니다.
 - Go Direct® SpectroVis® Plus가 충전되었는지 확인합니다. 측면에 있는 전원 버튼을 가볍게 한번 눌러 전원을 켭니다. 전원 LED가 녹색으로 켜지고 Bluetooth® LED가 파란색으로 깜박입니다.
- **팁!** 스펙트로 비즈 플러스(SpectroVis Plus)만 블루투스로 무선 연결할 수 있습니다. 다른 분광기는 모두 USB로 연결하여 사용합니다.

 스펙트로미터를 연결합니다 버튼을 누르면 사용 가능한 무선 분광기 목록을 볼 수 있습니다.

검색된 무선 장치 목록에서 분광기의 연결 버튼을 누릅니다. 이제 센서의 블루투스® LED가 파란색으로 고정됩니다.

SPECTRAL ANALYSIS	t
새로운 실험	저장된 파일 열기
▲ 흡광 🛛	파일 선택
• vs. 파장 (전체 스펙트럼)	VERNIER.COM
• vs. 농도 (Beer's Law)	User Manual
 vs. Time (Kinetics) 	^[2] <u>샘플 데이터</u>
♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥	
	Vernier
Emissions [+]	
Advanced Full Spectrum	
스팩트로미터가 연결되었습니다. 스펙트로미터를 연결합니다	
스낵트로이너가 현실되었습니다. 스낵트로이너는 현실일니다	

- 3. 완료 버튼을 눌러 사용준비를 마칩니다.
- **[!** () 아이콘을 누르면 분광기에 대한 정보를 볼 수 있습니다.

	0
분광계	×
스펙트로미터가 연결되지 않았습니다 아래 무선 장치를 연결하거나 USB통해 연결하세요.	
발견된 무선 장치 Filter 예) 007 or TMP	
SpectroVis Plus 0028103 Don't see your spectrometer? Visit our <u>support page</u> for troubleshooting tips.	연결
	완료

Ⅲ. 새로운 실험 선택

연결이 끝나면 화면에 새로운 실험 대화 상자가 표시됩니다. 광원의 종류와 분석 방법에 따라 흡광, 투과율, 형광, 발광이라는 4 가지 실험 구성을 선택할 수 있습니다.

이 4 가지 실험 구성에 대해 3 가지 데이터 수집 방법(전체 파장 대 강도, 특정 파장의 시간 대 강도, 특정 파장의 농도 대 강도)을 제공합니다.

이에 더해 4 가지 구성을 한 파일 안에서 데이터를 수집하고 비교할 수 있는 전문가 모드도 있습니다

┃! 이 대화 상자를 다시 보려면 언제든지 화면
 위쪽에 있는 파일 메뉴 아이콘 ' ▲ 제목 없음'을
 누르면 됩니다.

• 흡광

이 구성은 물질이 빛을 흡수하는 정도를 보기 위해 사용합니다. 흡수도 값은 물질이 있을 때와 없을 때의 빛의 비율을 사용하여 결정합니다. 흡광도는 다음 공식으로 계산합니다.

흡광도= 2 - log10(투과율 %)

· 광원 : 내부 백열 전등

흡광도 실험을 선택하면 그와 동시에 백열등이 켜지고 백열등이 완전한 밝기로 켜질 때까지 예열 시간이 필요합니다. · 보정 : 빈 큐벳 삽입 상태로 진행

[그림 1. 흡광도 측정 광원 구성]

흡광도 구성에서 지원되는 데이터 수집 모드

- 파장별 강도

독립 변수: 파장
데이터 열: 흡광도.
수집 모드: 전체 스펙트럼
(예: 황화 니켈의 흡광도)

특정 파장의 농도별 변화 독립 변수: 농도 데이터 열: 흡광도. 수집 모드: 이벤트 기반 흡광도의 기준으로 사용할 특정 파장을 지정해야 합니다. (예: 황화니켈의 농도 대 흡광도)

- 특정 파장에 대한 시간별 강도

독립 변수: 시간 데이터 열: 흡광도 수집 모드: 시간 기반. 흡광도 데이터의 기준으로 사용할 특정 파장을 선택해야 합니다. (예: 크리스탈 바이올렛의 수산화 이온에 의한 반응)

• %투과율

이 구성은 빛의 투과율 측정에 사용합니다. %투과율은 시료가 없을 때 측정한 광도에 대한 시료를 통과한 빛의 비율로 결정됩니다.

흡광도를 측정할 때와는 계산 수식만 다를 뿐 광원의 구성은 동일 합니다.

· 광원: 내부 백열 전등 흡광도 실험을 선택하면 그와 동시에 백열등이 켜지고 백열등이 완전한 밝기로 켜질 때까지 예열 시간이 필요합니다.

CCD Array

[그림 2. 투과율을 측정할 때의 광원의 구성]

%투과율 구성에서 지원되는 데이터 수집 모드

- 파장별 강도

독립 변수: 파장 데이터 열: 투과율 수집 모드: 전체 스펙트럼. (예: 황화니켈의 투과도)

91.6 %

- 농도별 강도

독립 변수: 농도 데이터 열: 투과율 수집 모드: 이벤트 기반 투과율 측정의 기준으로 사용할 특정 파장을 지정해야 합니다. (예: 황화니켈의 농도별 투과율)

- 특정 파장에 대한 시간별 강도

독립 변수: 시간 데이터 열: 투과율 수집 모드: 시간 기반. 투과율 측정의 기준으로 사용할 파장을 지정해야 합니다 (예: 크리스탈 바이올렛 수용액의 수산화 이온에 의한 탈색 반응 시간)

1Z

• 형광

형광은 여기광에 의해 발생하는 물질의 형광 특성을 조사할 때 사용합니다.

형광 측정을 위한 광원은 LED를 사용하기 때문에 예열이 필요하지 않습니다.

- · SpectroVis Plus : 405 및 500nm LED가 장치에 내장되어 있습니다. 형광실험을 선택하면 여기광 LED가 켜집니다. 데이터 수집 옵션에서 500nm또는 405nm 광원을 선택하면 그와 동시에 해당 광원이 켜집니다.
- · 형광/UV-VIS : 외부 LED
- · 보정: 보정은 선택사항입니다. 빈 큐벳을 설치하고 진행합니다.

[그림 3. 형광을 측정할 때의 광원의 구성]

형광 구성에서 지원되는 데이터 수집 모드

- 파장별 강도

독립 변수: 파장 데이터 열: 형광 수집 모드: 전체 스펙트럼. (예: 퀴닌의 형광 특성)

- 농도별 강도

독립 변수: 농도 데이터 열: 형광 수집 모드: 이벤트 기반 형광 측정의 기준으로 사용할 특정 파장을 지정해야 합니다. 농도 뿐 아니라 다른 조건에도 사용할 수 있습니다. (예: 염와이온 농도별 퀴닌의 형광 소광)

- 특정 파장에 대한 시간별 강도 독립 변수: 시간 데이터 열: 투과율 수집 모드: 시간 기반. 형광 측정의 기준으로 사용할 파장을 지정해야 합니다 (예: 비타민 B2의 형광 감소)

·발광

광원의 특성을 조사할 때 사용되는 구성입니다. 광원에서 발생하는 빛은 광섬유를 통해 스펙트로미터로 전달됩니다. 보정은 하지 않아도 크게 영향이 없지만, 암흑 상태의 노이즈를 보정하려면 센서로 들어가는 빛을 차단한 상태에서 보정을 진행합니다.

[그림 4. %투과율을 측정할 때의 광원의 구성]

발광 구성에서 지원되는 데이터 수집 모드

- 파장별 강도

독립 변수: 파장 데이터 열: 발광 수집 모드: 전체 스펙트럼 (예: 헬륨의 방전)

۵

- 농도별 강도

형광 측정의 기준으로 사용할 특정 파장을 지정해야 합니다. 독립 변수: 농도 데이터 열: 형광 수집 모드: 이벤트 기반 농도 뿐 아니라 다른 조건에도 사용할 수 있습니다. (예: 노출 시간에 따른 측정 세기)

- 특정 파장에 대한 시간별 강도 독립 변수: 시간 데이터 열: 투과율 수집 모드: 시간 기반. 형광 측정의 기준으로 사용할 파장을 지정해야 합니다 (예: 빔프로젝터 램프의 시동 출력)

• 전문가 모드

전문가 모드는 흡수, 투과율, 형광, 발광의 4가지 구성중 필요한 대로 구성을 변경하면서 데이터를 수집하여 하나의 파일에 저장할 수 있습니다. 또한 CCD 센서에서 측정한 보정하지 않은 원시 데이터를 얻어올 수 도 있습니다. 센서모드를 선택하면 기기에 광원이 있을 경우 자동으로 모드에 맞게 해당 광원이 켜지고 보정 방법이 지정됩니다.

• 각 버니어 스펙트로미터의 지원되는 모드

스펙트로미터	흡광	투과율	형광	발광
고 무선 SpectroVis Plus(Go Direct)	0	0	0	0
버니어 SpectroVis Plus	0	0	0	0
버니어 형광 UV-VIS	0	0	0	0
버니어 SpectroVis	0	0		0
버니어 UV-VIS	0	0		0
버니어 스펙트로미터 디텍터(Emissions Spectrometer)				0

* 발광 측정을 위해서는 버니어 스펙트로미터 디텍터를 제외하고는 별도 판매하는 광케이블이 있어야합니다. 버니어 스펙트로미터 디텍터도 별도 판매하는 광케이블이 있는 것이 편리합니다.

IV. 데이터 수집 방법

• 흡광 모드와 %투과율 모드

데이터 수집 준비

- 프로그램을 새로 시작하거나 화면 왼쪽 위의 파일 아이콘을 누르면 [새로운 실험] 시작화면을 볼 수 있습니다.
- 2. 파장별 강도, 특정 파장의 농도별 강도,
 특정 파장의 시간별 강도 중 원하는 데이터 수집방법을 선택합니다.
- 데이터 수집방법을 선택하면 동시에 백열 전등 광원이 켜지므로 정확한 측정을 위해 90초 예열 후 실험합니다.
 90초가 되기 전이라도 15초 후 부터는 건너뛰기 를 할 수 있습니다.
- 4. 보정은 반드시 해야 합니다. 보정하기 위해서는 빈 큐벳
 또는 측정하려는 물질이 섞이지 않은 순수한 용매만
 담긴 큐벳이 필요합니다.
 보정용 큐벳의 투명한 면으로 빛이 지나가도록 하여
 큐벳을 설치하고 보정 시작 버튼을 눌러 보정을
 시작합니다.
- 5. 보정이 끝나면 데이터 수집을 위해 시료가 담긴 큐벳으로 교환하여 데이터 수집을 시작합니다.이 때에도 투명한 면으로 빛이 통과시켜야 합니다.

Ungitted Hile Menu 수집 Ø ···· heresoeso 새로운 실험 저장된 파일 열기 ∧ 흡광 ⊨ 파일 선택 VERNIER.COM (√) % 투과율 □ User Manua vs. 파장 (전체 스펙트럼 : <u>샘플 데이터</u> : <u>버니어 스펙트로미터</u> • vs. 농도 (Beer's Vernier A Fluorescence Emissions 🗉 Advanced Full Spectrum fernier Go Direct SpectroWs Plus 연결된 ① 인걸 세제

· 파장별 강도 데이터 수집 모드

- 파장별 강도를 선택하고 수집 버튼을 눌러 데이터 수집을 시작합니다. 파장별 흡광도나 투과도가 전송되어 그래프가 시료의 상태에 따라 주기적으로 변하는 것을 확인할 수 있습니다. 데이터가 갱신되는 주기는 노출 시간에 따라 달라집니다.
- 종료 버튼을 누르면 마지막에 수집한 데이터가 데이터세트에 남습니다. 그래프는 자동으로 데이터 전체를 잘 볼 수 있도록 확대됩니다.

- 그래프를 클릭하면 해당지점의 x축 y축 정보가 표시되고 해당 데이터가 오른쪽 표에서도 선택됩니다.
- 다시 수집 버튼을 클릭하면 데이터 세트가 추가로 생성되고 그래프와 표에 표시됩니다.

🗘 아이콘을 누르면 데이터 수집 설정을 할 수 있습니다. 단, 데이터 수집 중에는 값을 변경할 수 없습니다.

- 노출 시간 : 센서가 빛을 감지하는 시간

노출 시간이 길수록 더 어두운 빛까지 감지할 수 있지만 수집 시간은 더 길어집니다.

- 파장 다듬기 : 지정 개수의 인접한 감광소자의 평균 값
 노이즈가 줄어드는 대신 파장 해상도는 떨어집니다.
 파장 분해능이 그다지 중요하지 않은 경우(농도별 흡광도 측정 등)에
 유효한 기능입니다.

1~10까지 가능합니다. 만약 10으로 했다면 측정 센서 좌, 우 각 10개를 포함한 21개의 센서의 값을 평균해서 데이터가 출력됩니다.

- 시구간 평균 : 노이즈를 줄이는 효과적인 방법입니다. 지정한 회수만큼 반복 측정하여 평균값을 출력합니다. 수집시간은 그 만큼 길어집니다. 1~10까지 가능합니다.

• 특정 파장의 농도별 강도 측정모드

 특정 파장의 농도별 강도 모드를 선택하면 기준이 되는 파장을 선택하는 대화 상자가 표시 됩니다.
 파장은 직접 숫자를 입력하거나 그래프에서 선택할 수 있습니다.

- 완료 버튼을 누르면 데이터 수집을 할 수 있는 화면이 표시됩니다.
 데이터 열의 이름이나 단위는 실험 조건에 맞게 변경할 수 있습니다. 꼭 농도가 아니더라도 온도, PH 등 실험의 종류에 맞게 단위와 이름을 변경 합니다.
- 4집 버튼을 눌러 데이터를 수집하기 위한 준비를 마무리합니다.
- 측정하고자 하는 조건의 샘플을 큐벳에 넣고 기록 버튼을 눌러 해당 조건을 입력하고 지점 기록을 눌러 측정된 값을 입력 합니다.
- 5. 실험 하고자 하는 모든 조건의 데이터를 입력 할 때까지 반복하여 데이터를 입력합니다.
- 데이터 수집이 완료되면 중지 버튼을 눌러 실험을 마무리합니다. 중지 이후라도 데이터를 추가하고 싶을 때에는 수집 버튼을 누른 뒤 추가 버튼을 누르면 데이터를 추가할 수 있습니다.

₽ Q

0.895

- 특정 파장의 시간별 강도 측정 모드
- 특정 파장의 시간별 강도 모드를 선택하면 기준이되는 파장을 선택하는 대화 상자가 표시 됩니다.
 파장은 직접 숫자를 입력하거나 그래프에서 선택할 수 있습니다.

- 주 데이터 수집 옵션 아이콘을 눌러 수집 간격을 조절 합니다. 최소 수집 간격은 USB로 연결 한 경우에는 1초, 블루투스로 연결할 경우의 3초입니다.
- 노출 시간: 센서가 빛을 감지하는 시간
 길수록 더 어두운 빛까지 감지할 수 있지만 수집
 시간은 더 길어집니다.
- 파장 다듬기: 지정 개수의 인접한 감광소자의 평균 값
 노이즈가 줄어드는 대신 파장 해상도는 떨어집니다.
 파장 분해능이 그다지 중요하지 않은 경우(농도별 흡광도 측정 등)에 유효한 기능입니다.
 1~10까지 가능합니다. 만약 10으로 했다면 측정 센서
 좌, 우 각 10개를 포함한 21개의 센서의 값을 평균해서 데이터가 출력됩니다.
- 시구간 평균: 노이즈를 줄이는 효과적인 방법입니다.
 지정한 회수만큼 반복 측정하여 평균값을 출력합니다.
 수집시간은 그 만큼 길어집니다. 1~10까지 가능합니다.
- 측정하기 위한 샘플을 준비하고 수집 버튼을 누르면 데이터 수집이 시작됩니다.
- 4. 데이터 수집이 완료되면 중지 버튼을 눌러 실험을 마무리합니다.
- 5. 중지 이후에는 현재 데이터 세트에는 데이터를 추가할
 수 없습니다. 수집 버튼을 누르면 새로운 데이터
 세트가 추가되어 데이터가 입력됩니다.

• 형광 모드

형광 모드를 선택하면 흡광, 투과율 측정 모드와 거의 동일한 대화상자와 실험조건을 볼 수 있습니다. 흡광, 투과율 측정모드와의 차이점은 여기광(Excitation Wavelength)의 파장을 선택할 수 있다는 것입니다.

🥾 Vernier Sp	ectral Analysis			Sel Vernier Spectral Analysis		×
Untit	COL		φ	D Untitled COLLE	T KEP 🔶 ··	••
1.0	Choose a Wavelength		cence ···	10 Vernier Go D	Virect SpectroVis Plus 연결됨 ①	
0.9	 Insert a sample cuvette. If necessary, insert an excitation LED. 	Excitation Wavelength: 405 • nm		0.9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		
0.7	 If necessary, select the appropriate excitation wavelength for your sample from the drop-down menu. 	Emission Wavelength: 500 nm	-	0.7 Wavefield (m)	n Settings	
0.6 Usoteccuce	 Set the desired emission wavelength by tapping the graph or entering the value. 	0.75	-		ATE	
0.4		đ 0.25 0.00	_	^{1년} ⁰⁴ ⁰³ 노출 시간	50 ms	
0.2		400 500 600 700 800 900 Wavelength (nm)		◎2 파장 다들	7 1 nm	
0.1	CALIBRATE SPECTROPHOTOMETER	DON	IE .	Tempora	Averaging 4	
R @	L Time (s)	0.000		∠ Q Excitation	n Wavelength 500 v nm	

·발광모드

발광모드는 흡광, 투과율 모드와 거의 동일합니다. 다만 내부 광원이 켜지지 않는 점만 다릅니다.

V. 데이터 분석

• 곡선 맞춤 적용

측정한 데이터가 특정 함수에 따른 변화가 예상될 때 곡선 맞춤을 적용하여 그 함수의 적절한 상수를 찾을 수 있습니다. 예를 들어, X축 데이터와 Y축의 데이터의 관계가 선형일 경우 Y축 데이터는 AX +B로 표현할 수 있습니다. 이 때 곡선 맞춤을 적용하면 상수 A와 B를 계산 해서 그 곡선(이 경우 직선)을 표시해 줍니다.

곡선 맞춤 수식은 비례, 선형, 2차, 반비례, 제곱에 반비례, 자연 지수, 자연 로그, 사인, 코사인 및 코사인 제곱 등이 지원됩니다.

예: 지수함수 곡선 맞춤 적용 *RMSE(Root Mean Square Error): 평균 제곱근 오차

ø ..

2.06

2.21

2.24

• 계산된 열

계산된 열 추가

계산된 열은 기존의 데이터 열을 이용해 정의한 수식으로 만든 열입니다.

계산된 열은 선형 또는 다른 함수를 사용하여 그래픽으로 분석할 수 있도록 데이터를 가공할 때 유용합니다.

- 1. 열 이름 옆의
 ···
 버튼을 눌러
 열 옵션
 메뉴를

 누릅니다.
- 2. 열 이름을 알아보기 쉽게 수정하고 표시 단위를 변경합니다.

3. 열 이름 옆의 ··· 버튼을 눌러 열 옵션 메뉴를 열어
 계산된 열 생성 메뉴를 누릅니다.
 원하는 이름으로 변경하고 수식 삽입 버튼을 누릅니다.

Untitled	수집		¢
0.50 -	게사되 역 생성	×	대이러 세트 1, F D Wavelength 영광 (nm) 영광
0.45 -		~	수동 열 생성
0.40	이름 Calculated 2	단위	지산된 열생성 385.0 386.2 387.3
0.30 - 0.25 -	표시된 정밀도 3 ▼ ● 소수점 자리 ● 유효 수자		388.4 389.6 390.7 391.8 293.0
0.20	 과학적 표기법 사용 		394.1 3952 3964
0.10	수식 ◆ 수식 삽입		397.5 396.6 399.8 400.9

팁! A, B, C : 상수 / X, Y, Z : 데이터 테이블 값 수식 목록 중에서 사용할 수식을 선택합니다. 필요에 따라 상수를 수정합니다. 열 드롭다운을 누르면 데이터 테이블의 다른 열도 선택할 수 있습니다.

적용을 눌러서 계산된 열을 만듭니다.
 새 계산된 열이 오른쪽 표에 생기고 그래프에도 표시됩니다.

열 옵션	×
이를 로그	단위
표시된 정밀도 3 ▼ ● 소수점 자리 ● 유효 숫자	
🔲 과학적 표기법 사용	
수식 ^{매개 변수 A} X열 1.5 log 형광 ▼	×
취	소 적용

- 계산된 열 데이터와 원본 데이터를 함께 표시하기위해 오른쪽에 두 번째 Y 축을 사용할 수 있습니다. 이 기능은 두 데이터 열을 하나의 그래프에 표시할 때 사용합니다.
 - ✓ 그래프 툴 버튼을 눌러 그래프 옵션 편집 을 선택합니다. 오른쪽 y축 범위를 클릭하거나 눌러 그래프에 두 번째 y축 컨트롤을 추가합니다.

6. 오른쪽 Y축에 표시할 열과 데이터 집합의 표시 스위치를 켭니다.
양쪽의 축을 개별적으로 드래그 하면 그래프를 독립적으로 이동할 수 있습니다. 자동 확대 배율은 데이터 세트를 보이거나 감추거나 하기 직전의 최대 배율로 자동으로 적용 됩니다.

계산된 열 삭제

- 계산된 열을 삭제하려면 삭제할 열 이름 옆의 ··· 버튼을 누릅니다.
 계산된 열을 제거하려면 열 삭제 를 선택합니다. 이 때 분광기 데이터, 파장 및 시간 열은 삭제할 수 없습니다.
- 2. 컬럼 삭제는 취소할 수 없습니다.

데이터 수집을 여러 차례 진행하여 데이터세트가 여러 개인 경우 모든 데이터 세트에서 계산열이 삭제됩니다. 계산된 열이 삭제되었을 때 표시된 경우 그래프에서도 제거됩니다.

• 수동열 생성

수동 열은 수동으로 데이터를 입력해야 하는 데이터 열입니다. 수동으로 계산된 데이터를 입력하려면 수동 열을 사용합니다.

1. 열 이름 옆의 ··· 버튼을 눌러 열 도구에 액세스합니다.

2. 수동 열 생성 버튼을 선택하여 새 수동 입력 열을 만듭니다.

열 이름을 수정하고 필요하면 단위를 추가하여 수동 열을 생성하면 새로 생성된 열이 표의 오른쪽에 나타납니다. 새 수동 열은 그래프에 자동으로 표시되지 않습니다. 표시하려면 축 이름을 눌러 표시 스위치를 켭니다.

3. 수동 열 셀을 더블 클릭하여 값을 입력합니다.

이벤트 기반 수집 모드에서 "농도" 또는 "이벤트" 열도 편집할 수 있는 수동 열입니다.

VI. 그래프 분석 도구

그래프 메뉴 아이콘 값 추정, 기울기, 통계 보기, 적분 보기 등의 분석 도구를 선택할 수 있는 메뉴가 보입니다.

・기울기 도구(Tangent)

x축에 대한 Y축의 변화율을 확인하려면 기울기 스위치를 켭니다. 그래프에서 지점을 선택하면 그 위치에서 기울기 값을 확인할 수 있습니다. 세로로 난 지시선을 클릭하여 이동할 수 도 있습니다.

• 통계 보기

그래프의 영역을 드래그 하면 축의 값 범위를 정할 수 있습니다. 영역이 선택된 상태에서 통계보기를 하면 그 영역의 다양한 통계를 확인 할 수 있습니다. 선택범위 지시선은 클릭하여 이동이 가능합니다.

• 적분 보기

그래프의 영역을 드래그 하면 축의 값 범위를 정할 수 있습니다. 영역이 선택된 상태에서 적분 보기 를 하면 그 영역에 대한 부분 적분 값을 확인 할 수 있습니다. 영역을 선택하지 않고 적분 보기 를 누르면 전체 적분 값이 표시됩니다.

·사이 값 추정(보간, Interpolation)

측정 데이터의 개수 가 많지 않을 때 측정한 두 구간 사이의 지점에서 예상 값을 추정하고 싶을 때 사용합니다.

· 그래프 확대 축소, 이동

그래프 영역을 드래그 한 후 ᠧ 그래프 확대 버튼을 누르면 선택한 영역이 확대됩니다.

COLLECT

• 드래그하여 그래프 좌우이동

ø ..

Ⅲ. 그래프 모양 바꾸기

• 그래프 표시 데이터 선택

그래프 라벨을 누르면 표시할 데이터를 선택할 수 있습니다. X,Y축을 변경하려면 X축 라벨에서 데이터를 선택합니다.

· 그래프 주석 추가

그래프 메뉴 아이콘 🗹 을 눌러 주석 추가 메뉴를 누르면 주석을 추가할 수 있습니다. 그래프 주석은 일단 만들고 나서 다른 곳을 클릭하여 편집모드를 나가야 드래그 하여 위치를 변경할 수 있습니다.

· 그래프 제목 추가, 선 모양 변경

그래프 메뉴 아이콘 🛃을 눌러 그래프 옵션 편집 메뉴를 누르면 그래프의 주제와 선 모양을 변경할 수 있습니다.

(주)한국과학 www.koreasci.com

Ⅲ. 파일 관리

• 파일 저장

파일 메뉴 버튼 제목 없음은 화면 왼쪽 위에 있습니다. 아이콘을 누르면 파일 메뉴를 볼 수 있습니다. 저장 메뉴를 누르면 파일이 저장될 위치와 이름을 지정할 수 있습니다. 파일 이름이 정해지면 파일 메뉴 버튼의 이름이 지정한 파일 이름으로 변경됩니다.

• 파일 불러오기

열기 메뉴를 누르면 .smbl파일이나 .csv파일을 불러 올 수 있습니다.

• 파일 내보내기

csv파일로 데이터를 저장할 수 있습니다. csv파일은 MS 오피스 엑셀프로그램 등에서 읽어 들일 수 있습니다. 그래프의 이미지를 누르면 png 파일로 그래프 이미지를 저장할 수 있습니다. 이미지를 저장하기 전에 프로그램의 윈도우 화면을 최대한 키우면 더 좋은 그래프 이미지를 얻을 수 있습니다.

• 인쇄하기

아직 직접 인쇄하는 기능은 지원하지 않습니다. 파일 내보내기를 하여 다른 응용프로그램을 이용하여 인쇄해야 합니다.

